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It is well known that the profile of finite-amplitude waves in a 
rarefied plasma (where the mean free path of the particles is consider- 
ably greater than the other characteristic dimensions) is determined by 
two competing processes: nonlinear twisting and "smearing" as a 
result of dispersion effects [1, 2]. For waves propagating across a 
magnetic field in a cold rarefied plasma the dispersion law is such 
that the phase velocity of small oscillations of the type under con- 
sideration falls off as the wavelength decreases (negative dispersion). 
Such a dispersion law results in the possible existence of stationary 
"compression" waves of finite amplitude (isolated and periodic), 
which have been studied fairly fully. A series of papers [3-5] have 
dealt with nonstationary plane waves moving across a magnetic field 
and excited by raising the magnetic pressure at the plasma-vacuum 
boundary. 

In what follows cylindrical waves propagating in a cold rarefied 
plasma across a strong magnetic field are investigated by numerical 
integration of the appropriate system of equations. The results are 
of significance for experiments in the rapid compression of plasma 
columns by a magnetic field under conditions when the plasma may 
be regarded as sufficiently rarefied [6]. 

1. Baslcsystem of equations. We shall consider motions whose 
characteristic frequency is considerably tess than the electron Larmor 

frequency 

Thus, the plasma may be taken to be quasi-neutral, Ni = N e = N. 
We shall also neglect the gas-kinetic pressure in comparison with 
the magnetic pressure (p << I-Ia/8n) since the plasma is assumed to be 
cold. As a result of this the motion of the electrons and ions is 
determined basically by the self-consistent electromagnetic field. 
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Under the conditions indicated, the equations of macroscopic 
motion of the electron and ion components and Maxweli's equations 
have the following form: 

dvt e 
�9 'hi  ~ = eE + T l v t H ]  + vm~ (% - -  v i ) ,  

Here vi(Ve) is the macroscopic velocity of ions (electrons), 

d v  i Ov  t d v  e OV , 
d-i" - -  - ~  + (v iV)  vt, ~ ~ -~-  + (vsV) v~, 

v is the ion-electron collision frequency (for greater generality some 
friction between plasma components has been introduced into the 
equations of motion). 
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We introduce the velocity of the center of mass, 

r~iv t + r%% 
(1.2) 

U - -  mt + m e 

Then the electron and ion velocities are written as 

nice 

v t ---- U + 4 ~ N  (m t + me) rot H, 
(1.3) 

t n  i r 

v~ ~--- U - -  4 ~ N  (mt + me) rot H.  

we now transform the system (1.1) in the following manner. We 
combine the two first equations of the system and set expressions (1.a) 
in the resulting expression. We then get an expression for the electric 
field E from the first equation of system (1.1) and set it in the induc- 
tion equation 0H/0t = --c rot E. As a result of these transformations 
the original system of equations assumes the form 
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4non I 8H 
rot H ---- ~ (v t - -  re) ,  rot E ~--- - -  c at 

a-T + div (Nvi) = 0 ,  + div (Nv,) :----- 0, div H = 0 .  

(1.1) 

/ r o t H  ~ /  mer r o t H ~  
+ ~_w_ v)  ~u +4_~_~_w_ ) . a ivH- -o  

_ N e  l 
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Here o is the conductivity of the plasma. In ordinary magnetohydro- 
dynamics we consider motions whose frequency is much less than the 
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ion-cyclotron frequency taut = eli / mtc; in addition, the plasma is 
considered to be fairly dense. The equations corresponding to the 
approximation of ordinary magnetohydrodynamics may  be obtained 
from system (1.1) by leaving only the term 

t 
4~NM (rot II • H) 

on the right side of the first equation, and only the terms 

c ~ rot II 
rot [UXH], ~-~rot c~ 

on the right side of the third equation. 
If, as is usual, we consider that o = const, then the system of 

equations may  in this case be written in the form 

Oil t ON . 
-Or + (U'V) U = 4 ~ . ~  (rot HXtt)  ~ -  + d w  (N.U) = 0, 

~ - - r o t  (UxH)  c~ t - -  + ~-~ AH div H - -  0, (1.5) 

which coincides with the system of equations of magnetohydrodynamics 
given, for example,  in [7]. The remaining terms in system (1.4) 
describe dispersion effects characteristic for a rarefied plasma in a 
strong magnet ic  field and are connected with taking into account 
electron inertia as well as plasma gyrotropy. We note that taking 
these terms into account allows us to treat the region of frequencies 

Ordinary magnetohydrodynamics "works" in the region of frequencies 

On the basis of system (1.4), we shall consider one-dimensional non- 
stationary cylindrical waves propagating strictly across the magnet ic  
field. The corresponding problem is stated as follows. At the initial 
moment  a homogeneous cold plasma of density N o composed of 
electrons and singly ionized ions fills an infinitely long cylinder of 
radius a, and there is a uniform magnet ic  field H 0 along the axis of 
the cylinder (z axis). The magnet ic  field at the p lasma-vacuum 
boundary subsequently begins to increase according to some specific 
law. As a resutt of the increasing pressure at the boundary a magnet ic  
disturbance propagates towards the axis of the cylinder and the plasma 
column begins to be compressed. 

In the cylindrical waves under consideration here, only the mag-  
netic field component H z directed along the initial field H0, and the 
velocity component  U r directed perpendicular to the wave front differ 
from zero, 

Then system (1.4) reduces to the form 

OU OU ~ H OH . mimec2 I ( i OH'~ ~ 
"-~- "{- U " ~ -  = - -  4~N M Or + ~ "-7 ~-ff" "~" ) ' 

ON 0 NU OH 0 U H  
-y/- + ~ (2VU) + ~ -  = 0, -'0-/- + W "(UH) + - =  - 7  

= 0-7 ~ - ~ -  + 4 ~ z  r O r  + 4~te2M r Or - 0 ( +  

0 r _g/-) (H = ~r,  u = G ) .  (1.6) 

The dispersion effects are described by the last term on the tight- 
hand side of the induction equation and are caused by the electron 
intertia. 

In order to solve system (t .6) it is convenient to pass to the 
Lagrangian coordinates r0, t (Ng0dr0 = Nrdr, N o is the density at the 
initial moment ,  r 0 is the initial coordinate of a plasma particle) and 
to the dimensionless variables 

H No U rmo, 
h = - ~ d ,  V=-'y-, ~-- V~ ' z = - 7 - ,  

( o r , = o ' , ) .  ' 

Ho mo -~ eHo 

Setting (1.7) in (1.6), we obtain 

OV t 0 au t z 0 t / ~ 0 h ~  
~ = W a - ~  (='), ~ = - - f  W ~-4.th')+ u  " 

o oh  i o r., oh i  f.,ah 
:iv :o 0=0, 0 (:.8) 

In the case of infinite conductivity the last equation of system (1.8) 

may be integrated once more to give 

i O ( z  ~ Oh 
v ~ =  i + - ~  ~ k ~  ~ ) "  o.9)  

This equation may be called the equation of state with a differen- 
tial coupling, since it gives the relation between the plasma density 
V -1 and the magnet ic  field h (and consequently the magnet ic  pressure). 

2. Results and discussion, The system of equations (1.8) was solved 
on an electronic computer by reducing it to finite-difference equations 
for the following initial and boundary conditions: 

a ( x 0 , 0 ) = O ,  V ( ~ 0 , 0 ) - = h ( x 0 , 0 ) = t ,  

oa (o T) = o, (2.1) .(o, ~)=o, ~ , 

h (a;, ~) = 1 + A (i -- e -~') , 
(a ~ = aO~oe / c). (2.2) 

Here a* is the dimensionless radius of the plasma column. 
Figure la  gives the profile of the magnet ic  field as a function of 

the Eulet coordinate x at different moments of t ime for the most 
characteristic stages of the process under consideration (where curves 
1, 2, 8 correspond to values r = 2, 8, 10). A magnet ic  field of 
comparatively small  ampli tude with h ~ = 1 + 0.2 (1 - e -l~ is given on 
the moving (in Euler coordinates) surface of the plasma column. The 
initiai radius of the cylinder is chosen to be 20 in units of  c/Woe. In 
addition, dissipation is neglected (i. e . ,  the calculation is performed 
for the condition v = 0). 

For t imes which are small the profile of the magnet ic  field does not 
differ from the profile obtained in ordinary magnetuhydrodynamics. 
The disturbance begins to propagate from the boundary of the column 
towards the axis with a velocity roughly equal to the Alfven velocity 
I t  / l f ~ N M .  Since the magnet ic  field pressure at the boundary is 
comparatively small, this boundary moves slowly and the column 
contracts. At subsequent moments  in t ime the wave profile begins to 
become steeper, since the parts with a stronger magnet ic  field prop- 
agate faster than the parts with a weaker magnet ic  field. In ordinary 
magnetohydrohynamics a discontinuity is then f o r m e d - a  shock wave. 
In our case when the dimension of the region in which a noticeable 
change in flow parameters occurs becomes equal in order of magnitude 
to the dispersion length c/W0e, dispersion effects begin to play a 
part and under the conditions specific to the problem tend to com-  
pensate the nonlinear twisting of the wave profile, and a smooth flow 
without discontinuities results. The wave profile acquires an oscil- 
latory character: in accordance with the negative dispersion law 
"peaks" and "valleys" appear in the magnet ic  field behind the leading 
front, which gradually transfer the field vaIues from the level main-  
tained at the boundary to the undisturbed value. The linear width of 
these magnet ic  field "peaks, ~ which may  be interpreted as a train of 
isolated waves of increasing amplitude, is roughly equal to 2 c/w 0e. 
As the wave front moves towards the axis, its velocity increases as a 
result of the increase of the magnet ic  field. After a t ime ~19 the 
leading front reaches the axis of the column" At this moment  a build- 
up of the magnet ic  field occurs, the field at the axis reaches a value 
h ~ 8, and the density of the plasma increases threefold (Fig. lb, 
where curves 1, 2 correspond to values r = 15, 19). Subsequently an 
essentially nonstationary reflection of cylindrical waves from the axis 
takes place; as can be seen from Fig. l c  (curves 1, 2 correspond to the 
values r = 21, 22), the max imum of the magnet ic  field moves rapidly 
from the axis in the direction of the boundary of the plasma column, 
and the field at the axis decreases. At subsequent moments  of t ime an 
interaction occurs between the reflected ~part ~ of the disturbance and 
waves which continue to come from the boundary, since some constant 
level of the magnet ic  field is maintained at the boundary, and the 
picture becomes difficult to interpret. 
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Figure 2c gives the magnetic  field profile for the cases when the 
amplitude of the magnet ic  field at the boundary has a large value, 

namely, A = 0.5 (Fig. 2c, where the curves 1, 2 correspond to values 
= 3, 9.5), and also in Fig. 2b, where the curve is for T = 13 and 

A = 1 (Fig. 2a, where the curves 1, 2 correspond to the values z = 3, 6). 

Naturally, the veloci ty of the propagating wave becomes greater and 
the maxima of the magnet ic  field oscillations also increase. In the 
case A = 0.5 a cylindrical wave covers a distance x = 16 in a t ime 
~13,  and the magnet ic  field strength increases to h ~ 3. The specific 
volume V here tends to zero (the density increases sharply), and the 

values of the Euler coordinates corresponding to neighboring "Lagrangian 
points" become almost coincident, This indicates that for h ~ 3 an 

"intersection of part icle  trajectories" occurs, since for such small  
magnet ic  field amplitudes dispersion effects cannot compensate for 
the nonlinear twisting; thus the wave apparently nbreaks" and forms 

a region of mult i -s t ream motion [1]. The further course of the process 
can no longer be followed with the help of Eqs. (1.6) or (i.8), which 
do not describe mult i -s t ream flow, and another model must be con- 

structed. Such a situation occurs fox the case when A = 1 (Fig. 2a), 

when the magnet ic  field increases to three times the value of the un- 

disturbed field in a t ime ~- = 6. The question of calculat ion of the 
flow in a rarefied plasma after the nbreaking" of the wave (when the 

amplitude of the magnet ic  field in the  wave becomes greater than 3H0) 
still  remaim open, since the method of art if icial  viscosity usually 
employed in hydrodynamics for calculat ing discontinuities is inap- 

pl icable here, because in the given situation it  does not correspond to 

the facts. 
Calculations were also carried out at  a finite value of the conductivity 

v ~ 0, o ~ ~o which correspond to the introduction of small  dissipative 

terms into the equations. These calculations show that the character 

of cylindrical  wave propagation and the propagation of f ini te-ampli tude 

plane waves remains basically the same as in the case of an ideal 
plasma (for o = ~). The only difference is that the amplitude of ~com- 

pression" waves is somewhat decreased and the profile is somewhat 
"smeared out." 

The author is grateful to R. Z. Sagdeev and N. N. Yanenko for 

valuable advice and discussion, and also to G. A. Maksima and E. A. 
Tsvetov for their assistance in the work. 
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